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Diagonalisation of the quadratic fermion Hamiltonian 
with a linear part 
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Natuurkundig Laboratorium, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE 
Amsterdam, The Netherlands 

Received 14 June 1978, in final form 14 August 1978 

Abstract. It is well known that the spectrum of a homogeneous quadratic Hamiltonian in m 
fermion construction-operator pairs is characterised by m mode energies. In this paper it is 
proved that the spectrum of a quadratic Hamiltonian with a linear part presents the same 
feature. Simple methods are given for the calculation of the mode energies and of the 
ground-state energy of the Hamiltonian. It is shown that, in contrast to the boson case, the 
diagonalisation cannot be carried out by a linear transformation of the fermion construction 
operators. Application of such a transformation can only result in a diagonalisation after 
the introduction of a 'ghost' particle (fermion) and a corresponding pair of Hermitian- 
conjugate construction operators, 

1. Introduction 

In a previous paper (Colpa 1978), to which we shall refer as c, we discussed the 
diagonalisation of homogeneous quadratic expressions in a finite set of construction 
operators". It was seen that for the solution of that (quasi-particle) problem it is quite 
possible to consider the boson and fermion cases as counterpart problems. The 
treatment of the properties of both types of construction operators with respect to their 
creation and destruction of real particles can also be kept strictly parallel (see for 
example de Boer 1965). Such a treatment, however, is certainly not possible for all 
problems. As an example we consider in this paper the diagonalisation of a Hamil- 
tonian of the general form (m denotes an arbitrary positive integer): 

m m 

H ( ( Y ~ , D ~ ~ , ~ L Y ,  +(YI,DZ~~~LY: + (Y , ,D~ , ,~ (Y ,  + C Y ~ ' D ~ , , ~ ( Y ~ )  + 1 (M,a,+MTaS), 
r ' ,  r =  1 r = l  

(1.1) 

which is a quadratic expression with a linear part in a finite set of fermion construction 
operators a,, a,!; the coefficients Dirtr ( i  = 1 ,2 ,3 ,4 )  and Mr can be complex numbers. 
Linear parts in fermion-operator Hamiltonians can occur quite well in physical 
theories, e.g. at a transition from observables to construction operators. For instance, 
one encounters linear (and higher odd-degree) terms in the frequently considered 
anisotropic XY-model (see e.g. Lieb eta1 1961) after the application of a magnetic field 
parallel to the X- or Y-axis (or parallel to some other direction in the XY-plane). 

t After de Boer (1965) we use the term 'construction operators' to denote boson and fermion creation and 
annihilation operators. 

0305-4470/79/040469 + 20$01 .OO @ 1979 The Institute of Physics 469 



470 J H P Colpa 

The counterpart problem, the diagonalisation of a Hamiltonian of the form (1.1) 
with all (Y representing boson construction operators, has often been considered in the 
literature. In that case the diagonalisation is straightforward. In a first step applying $ 4  
of C, one carries out a homogeneous linear transformation which turns the set of boson 
construction operators (Y into another such set of p and which diagonalises the 
homogeneous quadratic part according to: 

m m 

( (YS~D~~, , (Y ,  + ( Y ; , D ~ ~ ~ , ( Y :  +(Y ,~D~, ,~ (Y ,  +(Y, .D~,’~(Y:)  = 1 2Alp:p, +constant (1.2) 
r ’ , r =  1 r = l  

(we keep the coefficient 2 before A, in view of later developments in this paper). Since 
under such a transformation the linear part remains linear, the full Hamiltonian (1 .l) 
can be expressed in terms of these new construction operators f i r ,  p: as (note that H is a 
Hermitian operator): 

m 

H =  1 H,+constant, Hr..2ArP:P,CprPr+pr*p:, 
r = l  

A, real? numbers, p, complex numbers. (1.3) 

Now a ‘translation’ transformation from the operators p to operators y according to: 

Pr = Yr + t r ,  (1.4) 

does not affect the commutation relations for boson operators. By this transformation 
the terms H, in equation (1.3) pass into: 

p: = y; + t:, rr complex numbers, r = 1,2, . . . , m, 

H r  =2Ary:yr+(2ArtT + p r ) ~ r + ( 2 A r t r + ~ r * ) ~ :  + ( 2 h r l t , I 2 + ~ r t r + ~ r * t r * ) ,  (1.5) 

and we see by inspection that (in case all A,  # 0) the choice t, = - ~ ? / 2 h ~  transforms 
away the linear part of the H,. So we obtain: 

tn m 

H = 1 (2Ary:yr - /pr12/2Ar) = 1 hw,y:y, +constant. (1.6) 

As is well known the eigenvalues E of the Hamiltonian can be read immediately from 
the form of equation (1.6). The eigenvalues of H are given by: 

r = l  r = l  

m m 

E = 1 2n,A, +constant = 1 n,hw, +constant, (1.7) 
,= 1 r = l  

where each n, can assume any non-negative integer. We express this situaton concisely 
by saying that the spectrum of a quadratic m-mode (i.e. m boson-operator pairs are 
involved) boson Hamiltonian with a linear part is characterised by the m mode energies 
hw, = 2A,. Note that the values of the mode energies of a homogeneous quadratic boson 
Hamiltonian are not affected if one adds a linear part to that Hamiltonian. 

In this paper we prove that also in case the (Y in equation (1.1) are fermion operators, 
the spectrum of the Hamiltonian is characterised by m mode energies, i.e. the 
eivenvalues E of the Hamiltonian are again given by an equation of the form (1.7) 
where now the n, can assume only the values 0 and 1. If one tries to prove this in a 
similar way as done above for the boson case, we immediately encounter the first 

Strictly speaking the considerations of c were more restricted than is suggested here: in the resulting 
diagonalised expression all A,  were positive. In what follows we do not want this restriction on the A, and we 
consider equation (1.3) with arbitrary real A,. 



The quadratic fermion Hamiltonian with a linear part 47 1 

difficulty that, even for m = 1, a transformation of the form (1.4) does not conserve the 
anticommutation relations for fermion operators. In 8 4 it is shown that in general 
non-linear transformations are involved in the diagonalisations. For m > 1 we are faced 
with a second difficulty, in that by the validity of the anticommutation relations the 
terms H, in equation (1.3) do not commute in general, whereas the terms hw,y:y,  do in 
the final expression (1.6). In view of this we may expect that in the fermion case each 
particular mode energy is usually a function of all A, and CL,. 

At this stage it is evident that one cannot gain much advantage from the viewpoint 
that bosons and fermions constitute counterpart problems in mathematics. Of course 
one can use a brute-force method and diagonalise with the help of a computer the 
(Hermitian) 2m-square matrix which represents the Hamiltonian H. For m = 3 for 
example, if in the occupation-number representation the order of rows and columns is 
given by the order of the 23 = 8 basis vectors: 

(1.8) IOOO), IlOO), lolo), IIlO), IOOl), IlOl), loll) ,  11m 

It is seen that already for very small values of m one is confronted with rather large 
matrices; their construction has to be performed very carefully and, still worse, one does 
not recognise from them that the spectrum can be characterised by m mode energies. 
Since to our knowledge this characteristic of the spectrum of a fermion Hamiltonian of 
the form (1.1) has never been proved generally, for the time being we may even doubt 
that the spectrum possesses this property. 

This paper is organised as follows. In § 2 we solve completely generally the problem 
of the diagonalisation of a fermion Hamiltonian of the form (1.1). By the introduction 
of a 'ghost' particle we are able to reduce the problem to the diagonalisation of a 
homogeneous quadratic fermion Hamiltonian, which can be solved by the standard 
method presented in Appendix A of this paper. Thus we show that the spectrum of 
equation (1.1) can indeed be characterised by m mode energies, and that one can find 
these energies by the unitary diagonalisation of an Hermitian matrix of order only 
2(m + 1); this order is to be compared with the order 2" of matrices like (1.9). Also the 
ground-state energy will be calculated. Applying a procedure of Lieb et a1 (1961) we 
show in § 3 that, in case all coefficients in the Hamiltonian (1.1) are real, one can find the 
mode energies by the (orthogonal) diagonalisation of a symmetric real matrix of order 
m. In 0 4 the direct relation is discussed between the original construction operators (Y 

and new ones y, in terms of which the Hamiltonian (1 . l )  can be written in the form (1.6); 
it is made plausible that in general such a direct relation is too complicated to be of any 



472 J H P Colpa 

practical use. We summarise the results of this paper in § 5. In Appendix B a theorem is 
proved which is used in the Appendix A already mentioned, in Appendix C we discuss a 
detail occurring in our treatment. 

2. Diagonalisation of the fermion Hamiltonian (1.1) by homogenisation. General 
method 

In this section we shall first convert the fermion Hamiltonian (1.1) in such a way that it 
can be tackled by standard methods and thereafter we shall carry out the actual 
diagonalisation. According to Appendix A (equation (A.4)) we can assume without 
restricting the generality that the 2m-square matrix 

has the form shown in equation (2.1) and is Hermitian. In accordance with Appendix A 
we call 9 the grand-dynamical matrix of the homogeneous quadratic part of equation 
(1.1). Assuming that the relevant Hilbert space X has the dimension 2"' (in the 
following treatment it is allowed that an arbitrary number of the m construction- 
operator pairs do not occur explicitly in the Hamiltonian (1.1) because of zero 
coefficients), we introduce a 2""-dimensional Hilbert space %by the introduction of a 
'ghost' particle. In addition to the m pairsf ai,, &: (r = 1,2 ,  . . . , m) let an (m + 1)-th 
fermion construction-operator pair &o, c i h  be defined in 2, which corresponds to the 
first occupation number occurring in the occupation-number representation of the basis 
kets lnonlnz. . . n,) of 2 (n, = 0 or 1; r = 0 , 1 , 2 , .  . . , m).  Now we homogenise the 
Hamiltonian ( l . l ) ,  i.e. we define in the larger Hilbert space a homogeneous quadratic 
Hamiltonian H which is constructed from the Hamiltonian (1.1) by substituting in the 
linear part: 

(2.2) 
- 7  - t  

a, + &ai, - &o&,, a: ' & : & o - a , c u o ,  

whereas the quadratic part is left unchanged apart from adding tildes to denote that the 
construction operators are now defined in %. Thus we obtain: 

m 

H = 1 {&j,D1,.,&, +&;,DZr.,&: + & r , D 3 , , r & r  + & , . D 4 , , , & : }  
r ' ,  r -1 

(2.3) 

If 8, is defined to be the 2"'-dimensional subspace of 8 which is spanned by the 
orthonormal set of 2"' kets 

( 2 . 4 ~ )  

it is easily verified that with the mapping of 2 into &+, where the basis vector 
Inl n 2 . .  . n,,,) in X corresponds to the basis vector ( 2 . 4 ~ )  in 8+ as its image, the 
operator H acts in &+ just as H does in 8. This is seen with the help of table 1 which 
shows how the operators in the right-hand sides of equation (2.2) act on the basis 

t We mark several items in this paper with a tilde to indicate that they are more closely related to the 
2"*' -dimensional Hilbert space X than to the 2"-dimensional Hilbert space E. For example, the tilde in ai, 
indicates that this operator acts in %?and not in Z. 

2-"z([0 n1 n 2 . .  . n , )+ / l  n1 n 2 . .  . n"')), 
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kets of 2. We can immediately compare the operations ( r  = 1,2,  . . . , m ; k = n1+ n2 + 
. . . + nr-l): 

(&Aai,-&o&r)(l~nl n 2 . . . n r = ~ . . . n , ) + l l  n l  nz. . . n r = O . .  .n,))=Izero) 

a , / n l  n 2 .  . . n, = 0 .  . . n,) = /zero) 

and (2.5) 
a r / n l  n 2 ,  , , n, = 1 . . . n,) = (-1) In1 n2.  . . n, = 0 .  . . n,) k 

( & & j i r - & o & r ) ( l ~  n 2 . .  .,a,= 1 . .  . n,)+ll n l  n 2 . .  nr=  1 .  * n m ) )  

= ( - ~ ) ~ ( l ~ n ~  n2.. . n , = ~ .  . . n,)+ll n l  n 2 . .  . n , = ~ .  . . a m ) ) ,  

and compare the analogous operations of C Y :  and ai:&-&:&;. (It is trivial to show that 
with the mapping under consideration the quadratic terms of equation (1.1) act in X 
just like the corresponding terms of equation (2.3) act in %+.) In a similar way we can 
prove that (again with a suitable mapping) H acts in the subspace &- of %', spanned by 
the orthonormal set of 2" kets: 

(2.4b) 

just like H- does in X, if the operator H- is constructed from H (equation (1.1)) by 
providing the M, and M ?  with a minus sign: 

H-= 

2-1'2(10 n1 n2.  * .n,)-Il a1 n 2 . .  . n,)), 

m 

{ C Y i , D l r , r C Y r  +&S,D2r'raj + c Y ~ ' ~ ~ ~ , ~ c Y , + c Y ~ ' ~ ~ ~ , ~ c Y ~ } -  1 {M,cY,+MTcY,} .  t 
r ' , r = l  r=1 

(2.6) 

Since the anticommutation relations for fermion operators are not affected by the 
simultaneous multiplication of all CY, (and C Y : )  by a phase factor exp(in)( = exp(-in)) = 
-1, the operators H and H- have the same spectrum. In view of the fact that the Hilbert 
space 2? is the direct sum of the !orthogonal) subspaces 2?+ and %-, we conclude that 
each level of the spectrum of H defined in & has a degeneracy which is twice its 
degeneracy in the spectrum of H defined in X. If the spectrum of this H is characterised 
by m mode energies (which will be shown presently), then it is evident that the extra 
degeneracy of the spectrum of H can be described by an extra mode energy zero so that 
the spectrum of H then is characterised by m + 1 mode energies. One of these is zero, 
whereas the other m are given by the mode energies of the spectrum of H. 

The diagonalisation of the homogeneous quadratic Hamiltonian H is standard (see 
Appendix A) and will be carried out below. The spectrum of such an H is characterised 
by m + 1 mode energies and because of the even degeneracy just shown of all energy 
levels, at least one of these mode energies vanishes (one can argue for example that only 
a zero mode energy allows one to go from one ground state to another). So we can 
conclude that the spectrum of H is indeed characterised by m mode energies, 

Now we turn to the diagonalisation of H. Following the procedure described in 
Appendix A, we rewrite equation (2.3) according to equation (A.5) (d, (i = 1, 2 ,3 ,4 )  
are ( m  + 1)-square matrices): 

where 2' is a row 2(m + 1)-vector of operators &: 
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and 2c the Hermitian-conjugate column vector. The grand-dynamical (Hermitian) 
matrix 3 of the Hamiltonian (2.7) is given by ( A  and B are m-square matrices, 
A =Dl = -d,* and B = D 2  = -6: are (m + 1)-square matrices): 
- -  . e  

. . .  
tM*, 

B 

. . .  . . .  
t M m  - $Mm 

The diagonalisation of H is now performed according to the scheme (cf equation 

(2.10) 

(A.8)) : 
. -  H e &,9& = ,-31+$7/"j2, = ;'&, 

where (cf equation (A.6)) 

(2.11) 

is a row vector of new fermion construction operators (2 the Hermitian-conjugate 
column vector) and where the unitary matrix (unitary in order that the i. constitute a 
set of fermion construction operators provided the & do too, see Appendix A) of the 
partitioned form shown in equation (2.11) (cf equation (A.7)), is chosen so that $? is 
diagonal and of the form: - 

Y9S = 8 =diag(Ao, A I ,  A 2 ,  . . . , A,,,, -Ao,  - A I ,  -A2 ,  . . . , -A,,,). (2.12) 

(That such a ?' exists, is proved in Appendix A.) This diagonalisation results in the 
desired form: 

I n  l I 1  I71 

H =  A r ( i . : i . r - i . r i . ; ) =  2 2A,f;j,- A r =  2 hur(i.:fr-i).  
r = O  r = l  r =  1 r = l  

(2.13) 

(Since we saw above that at least one of the A,  vanishes', it is natural to put the columns 
of gT in equation (2.12) in such an order that A. = O$.) 

+ W e  can also see this directly: one verifies immediately !hat the 2 ( m  + 1)-vector ( 1 0 0 .  . . 0 100 . .  . 0)' (the 
prime indicates a column vector) is an eigenvector of 9 with vanishing eigenvalue. It can be proved (cf 
Appendix A )  that the multiplicity of a zero eigenvalue of a Hermitian matrix is even if the matrix has the 
partitioned form of the extreme right-hand side.of equation (2.9). 
$ It is not important for our considerations which transformation is actually used in the diagonalisation. 
However, we want to point out here that in general there is no unique natural choice for the 1st and ( P I  + 2)-th 
column of 2'. See Appendix C for a full treatment of this matter. 
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In view of the connection, discussed in the first part of this section, between the 
spectra of H (equation (2.3)) and H (equation (1.111, the spectrum of H coincides with 
that of any operator, also defined in the 2"'-dimensional Hilbert space 2, of the form of 
the extreme right-hand side of equation (2.13) (without tildes) with the values of the hw, 
unaltered and the y constituting an arbitrary set of fermion construction operators 
(defined in 2). Now one easily shows the existence of a set of fermion construction 
operators y (which can be defined by their action on 2" orthonormal eigenkets of the 
Hamiltonian (1.1 j), in terms of which the Hamiltonian (1.1) really (i.e. eigenvalues and 
corresponding eigenkers are the same) can be written in the form: 

(2.13') 

with the same values of the mode energies hw, as in equation (2.13). Note that the 
fermion construction operators + and y in equations (2.13) and (2.13') are different 
operators since they are defined in different Hilbert spaces. The direct connection 
between the y in equation (2.13') and the (Y in equation (1.1) in general is very 
complicated and will be discussed in § 4. 

In conclusion, the eigenvalues of the 2(m + 1 )-square Hermitian matrix (2.9) can be 
identified with (half) the mode energies hw, of the spectrum of the Hamiltonian (1.1) or 
(2.13'). To be more specific: two zero eigenvalues are not relevant and to be excluded; 
one finds for each r = 1,2 ,  . . . , m the values &ha,  and -$hw, among the remaining 
eigenvalues. Note that one is free to choose for each r the sign of hw, and that this 
choice has no influence on the spectrum one derives from equation (2.13') (cf the last 
footnote in Appendix A). If one chooses all mode energies hw, 3 0, equation (2.13') 
immediately yields the ground-state energy of the Hamiltonian H: the lowest eigen- 
value of H then equals minus half times the sum of all these mode energies. 

3. Simplification in case the grand-dynamical matrix (2.9) is real 
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symmetric matrix 0 has been defined by its elements: 

0 1 ,  =[(A-B)(A+B)I,,+M,M,. (3.2) 

Because it is natural to identify the apparent zero eigenvalue of the matrix in the 
right-hand side of equation (3.1) with the redundant eigenvalue which was introduced 
in Q 2 by transferring our considerations to the larger Hilbert space &, we conclude 
immediately that the eigenvalues of the matrix 4 0  represent the squares of the mode 
energies which characterise the spectrum of the Hamiltonian (1.1) (in case all 
coeficients are real!) .  According to the last paragraph of § 2 the ground-state energy of 
the Hamiltonian is given by minus half times the sum of the mode energies provided 
these are taken as non-negative. 

We take as an example a fermion Hamiltonian of the form (1.3) or, adding a 
constant, of the form: 

(3.3) 
m m 

H s  1 H,= C { A , ( ( Y S L Y ~ - L Y , ~ Y : ) + ~ ~ , + ~ T L Y ~ } ,  A,  real numbers, 
r = l  r = l  

pr complex numbers 

(this form can always be obtained for a Hamiltonian (1.1) by diagonalisation of the 
homogeneous quadratic part; in practice, however, the complete diagonalisation would 
then require two matrix diagonalisations, and it seems preferable to apply the single 
diagonalisation of @ given by equation (2.9) for finding the mode energies). We first 
remark that the spectrum of the Hamiltonian (3.3) is not changed if we replace the 
coefficients p r  by their absolute values since the anticommutation relations for fermion 
operators are not affected by the simultaneous multiplication of all a, and as by aphase 
factor exp(i&) and exp(-i4r), respectively (& real). Then we obtain for the matrix 0 
according to equation (3.2): 

As argued above the eigenvalues of 4 0  represent the squares of the mode energies of 
the Hamiltonian (3.3). The ground-state energy of this Hamiltonian equals minus the 
sum of the (non-negative) square roots of the eigenvalues of D. 

Note that all m values of A, and of p r  make themselves felt in the value of each 
particular mode energy just as we expected in 9 1 in connection with our comparison of 
the fermion and boson situation. 

4. Discussion 

We have seen that the formalisms of boson and fermion construction operators both 
have the important property that an m-mode quadratic Hamiltonian with a linear part 
immediately can be associated with a spectrum characterised by m mode energies. 

The essential point in which the treatment for fermions as given in this paper differs 
from the familiar treatment for bosons is, that the ‘transforming away’ of the linear part 
in the boson case is performed by a simple ‘translation’ transformation of the form (1.4) 
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of the construction operators, whereas in the fermion case we homogenised the 
Hamiltonian (1.1) by the introduction of a ghost particle (§  2). 

In this section we want to prove that without such a trick a linear transformation 
applied to the fermion construction operators cannot lead to the desired result. To this 
end we consider the fermion construction operators y in terms of which the Hamil- 
tonian (1.1) can be written in the form (2.13’). According to 0 2 such y exist. Of course 
it is not surprising that the 2”-square matrices by which each of these construction 
operators y can be represented, in one way or another are expressible in the matrices 
corresponding to the operators a occurring in equation (1.1). In the following two 
examples such expressions relating y and a are easily written down. We shall see that 
in these examples the expressions are much more complicated than merely linear, which 
would be necessary to solve the diagonalisation problem by means of a linear trans- 
formation without an additional trick. 

Example 1. It is quite easy to treat the case of a two-dimensional Hilbert space in 
which the one-mode Hamiltonian is given as: 

H=2Aatcu +pcv+p*a’, A real number, p non-zero complex number, 
(4.1) 

and to find a construction-operator pair y, y’ so that the Hamiltonian can be rewritten 
as (mode energy and ground-state energy follow from the treatment of the Hamiltonian 
(3.3) with m = 1): 

(4.2) H = 2(A2 t 12)1’2yLy + A  - (A * + IF l 2 ) I l 2 .  

One can simply work in a representation where the a-operators are represented by: 

and find after a somewhat tedious algebraic calculation that one can take y as: 
y = $ ( A 2  + IpI 2 ) -1 /2  {[(A2 + ~ / . . I / * ) ~ ’ ~ + A ] C U  - [ ( A 2 +  ~ F ~ ~ ) ’ / * + A ] - ~ C L * ~ ~ ~ + C ( * ( ~  - 2 ~ ’ a ) ) .  

(4.4) 
Note that the transformation (4.4) is not a linear one. Note further that even in case the 
Hamiltonian (4.1) is purely linear ( A  = 0), it is by equation (4.2) rewritten as a quadratic 
expression in construction operators in accordance with the trivial fact that the 
spectrum is characterised by one mode energy (cf the situation in the boson case where 
A = 0 prevents one from using equation (1.4) for transforming the linear Hamiltonian 
into a quadratic one). 

Example 2. Consider the (non-zero) linear Hamiltonian 
nt 

HE 1 ( ~ ~ , a , + p T a : ) ,  p,  complex numbers, (4.5) 
r = l  

defined in a 2”‘-dimensional Hilbert space. It is easily verified that the operator 

(4.6) 

satisfies the anticommutation relation [PI,  P i ] ,  = 1 and therefore can be considered as 
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the first fermion construction operator out of a set of m. By the corresponding 
transformation the Hamiltonian is changed into: 

H = C(Pi + P : ) .  (4.7) 

Using the transformation (4.4) (read y1 and p1 instead of y and a, respectively) for 
the case A = 0 and p (which now equals C) positive: 

Y1 =tp,-;p: +;U -2p:pA (4.8) 

H = 2 C y ;  C. (4.9) 

we obtain according to equation (4.2) 

With this we have found that one mode energy equals 2C, the m - 1 remaining ones 
obviously being zero. 

In this example the transformation of the a into y1 is extremely complicated and 
certainly not a linear one. This is seen from equations (4.6) and (4.8) which yield: 

y1 =e1 p , a , - W  f p5Y: + t ( l - 2 C - 2  c p*p,a: 'ar) .  (4.10) 
m in 

r = l  r = l  r ' , r = l  

With these two examples we hope to have convinced the reader that in general we 
can only carry out the diagonalisation of quadratic Hamiltonians with a linear part by a 
linear transformation of construction operators if we call in the aid of an extra 
construction-operator pair &, &A, in the way we did in 9 2. Our results show that 
without incorporating such an auxiliary &O into the problem, in general the question of 
the transformation does not fit in a natural way into the formalism of fermion 
construction operators. 

5. Conclusion 

For boson construction operators it is well known that a linear part in a quadratic 
m-mode Hamiltonian of the form (1.1) is easily transformed away by a 'translation' 
transformation of the form (1.4). The fact that many problems in terms of construction 
operators allow parallel treatments for the boson and fermion case, strongly suggests 
that in the fermion case the spectrum is also characterised by m mode energies (i.e. the 
energy eigenvalues are given by an equation of the form (1.7), n, = 0 or 1) and that in 
this case as well a linear part does not present difficulties. We could indeed show the 
spectrum to have this property, but it emerges that there is no question of solving the 
fermion problem by considering it as the counterpart of the corresponding boson 
problem. 

The formalism of the fermion construction operators allows a relatively simple 
calculation of the spectrum. We succeeded (0 2) in establishing the 2(m + 1)-square 
Hermitian matrix 6 (equation (2.9); the m-square matrices A and B are defined by 
equation (2.1)), the eigenvalues of which equal (half times) the mode energies. In case 
all coefficients in the Hamiltonian are real (9  3), we may even find these energies by 
diagonalising a real symmetric matrix D of order only m, the elements of which are 
given by equation (3.2). Each of these matrices 6 and D contain the same information 
about the spectrum as the (in general much larger) matrices of order 2" like equation 
( l eg ) ,  which one would use when calculating the spectrum by a brute-force technique; in 
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addition the construction of the last kind of matrix is in practice more complicated. The 
ground-state energy of the Hamiltonian (1.1) can be found from the mode energies 
according to the considerations in the last paragraph of 8 2. 

We recognised the possibility of writing down the Hamiltonian (1.1) in the form 
(2.13'). In  contrast with the boson case (cf equation (1.4)) this does not follow from the 
application of a simple linear transformation to  the construction operators, which 
accomplishes this diagonalisation: in the fermion case such a transformation in general 
does not exist ($4). Rather is the form (2.13') an immediate consequence of the 
property of the spectrum to be characterised by m mode energies. For the same reason a 
purely linear fermion Hamiltonian can also be written into the homogeneous quadratic 
form (2.13') as we showed explicitly in  8 4 (example 2). 
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Appendix A. Diagonalisation of the general homogeneous quadratic fermion Hamil- 
tonian 

In this appendix we consider the diagonalisation of a Hamiltonian of the general form 
( m  denotes an arbitrary positive integer): 

where the a,, a: constitute a set of m fermion-operator pairs and where the coefficients 
D,,., ( i  = 1, 2, 3 ,4)  can be complex numbers. The treatment, which is a direct trans- 
lation of the treatment of the analogous problem in the boson case in c § 4, is more 
general than the one of Lieb et a1 (1961) who assumed the coefficients to be real. The 
approach of Lieb et ai requires an orthogonal diagonalisation of a (real) symmetric 
matrix of order m, whereas our approach involves the unitary diagonalisation of a 
Hermitian matrix of order 2m. 

An operator of the form (A. l )  is Hermitian if and only if the following relations 
hold: 

(Note: the first line of this equation implies that the diagonal elements of D1 and D4 are 
real.) For the subsequent analysis it is essential that 

which obviously can be assumed without restricting the generality: a rewriting in this 
sense modifies the (Hermitian) expression (A. l )  at most by an additive (real) constant. 
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Then the 2m-square matrix: 

has the form indicated and is Hermitian (which implies that A is Hermitian and B 
skew-symmetric). As in c we call 9 the grand-dynamical matrix of the Hamiltonian 
(A.l )  and use it to rewrite equation (A.l )  in matrix notation: 

CY 
H at9a,  a'  = ( C Y +  CY), (A.5) 

where at and a are a row and column vector, respectively, each with 2m fermion 
construction operators as elements, and where at and a are m-vectors (no confusion is 
to be expected because no extra symbols indicate that at and CY in at are row m-vectors 
and in a column m-vectors). Taking into account that in a transformation to new 
construction operators y of the form: 

the matrix Y has the partitioned square form shown in equation (A.6) and that Fshould 
be unitary in order that the y constitute a set of fermion operators provided the CY do as 
well, we have: 

v U* (A.7) 

Now in a diagonalisation according to the scheme 

('4.8) H a'ga = a '~ ' (F ' ) - 'G j?~- '3a  = ct8c 

with a matrix 5 of the form (A.71, the diagonal matrix 8 necessarily has the form: 

(5+)- '9Y-'  = = $ A  diag(wl, w2, . . . , w,, - w l ,  - w 2 ,  . . . , --U,,,). (A.9) 

The right-hand side has the special form indicated, because the matrix (F')-'9.9-' = 
Y9FT is Hermitian (so the diagonal elements are real), while the right-lower m-square 
matrix of a product of the form (Ft)-'9Y-' equals minus the complex conjugate of the 
left-upper m-square matrix of that product, if 9 and Y-' have the partitioned forms 
(A.4) and (A.7), respectively. 

We now turn our attention to the construction of a unitary matrix F-' of the 
partitioned form (A.7) which diagonalises 9 according to equation (A.9). We assume 
first that 9 is non-singular, i.e. 9 has no zero eigenvalues. Then half of the eigenvalues 
of 9 are positive, the other half negative; apart from the sign the two halves contain the 
same eigenvalues. To see this we consider an arbitrary eigenvalue A with multiplicity n. 

t In this appendix (and in this paper) the notation of c is followed throughout. Accordingly matrices are often 
represented in partitioned form: a 2m-square matrix is represented by four m-square matrices and 
2m-vectors by two m-vectors. Script letters are used to indicate 2m-square matrices and 2m-vectors, Latin or 
Greek letters are used for m-square matrices and m-vectors. By A* we denote the complex conjugate of the 
matrix A (elements: (A*), , ,  = (Ar,r )* ) .  
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Let (U, U,)’ ( r  = 1, 2, . . . , n ;  ur and U, are column m-vectors and the prime denotes a 
column vector) constitute an orthogonal set of n eigenvectors associated with the 
eigenvalue A. Then we have: 

AM, i Bv, = Au, AV: +BUT = - A V :  

or (A.lO) 

-B*u,-A*v,=Av, -B*v? -A*uT = -Au?, 

so that (U? U?)‘ is an eigenvector associated with the eigenvalue -A if (U, U,)’ is an 
eigenvector associated with the eigenvalue A. Since obviously together with the (U, U,)’ 
also the (U: U:)’ ( r  = 1 , 2 , .  . . , n )  are perpendicular to each other, we see that the 
multiplicity of -A is at least that of A .  Starting from eigenvalue -A instead of A we 
prove in a similar way that the multiplicity of -A is at most that of A so that the 
multiplicities of A and -A are the same. For the construction of a F-’ with the 
above-mentioned properties we start from an arbitrary unitary matrix 3-’ which 
diagonalizes 9 but which possibly does not have the form (A.7). We only arrange that 
the first m columns (U, ur)’  ( r  = 1, 2, . . . , m) of F-’ are associated with the positive 
eigenvalues of 9. Since the (U, U,)’ are perpendicular to each other, also the (U? U?)’ 
constitute an orthogonal set. Furthermore the (U: U?)’, being associated with the 
negative eigenvalues of 9 (cf equation (A.lO)), are perpendicular to the m vectors 
(U, U,)’ (different eigenvalues). Therefore the matrix arising from the replacement of 
the last m columns of the chosen 3-’ by (U? UT)’, (U; U;)’, . . . , (U: U:)’, is a unitary 
matrix with the required properties: it has the form (A.7) and the diagonalisation 
property (A.9). 

Now we concentrate on the case that 9 is singular. After the considerations above it 
is easily verified that the multiplicity of the eigenvalue 0 should be even: 2n, say. For the 
construction of a 5-l we obviously only have to show the existence of an orthonormal 
set 93 of eigenvectors of 9 associated with the eigenvalue 0, which can serve as columns 
in a matrix F-’ of the form (A.7): 

93 ={( U1 U’)’, ( U 2  U*)’, . . . , (U, U,)’, (UT UT)’, (UT UT)‘, . . * , (U: U:)’}. (A. 11) 

The existence of such a set of eigenvectors is guaranteed by the theorem formulated in 
Appendix B (cf equation (B.6)). This theorem can be proved in principle by adding to 
the grand-dynamical matrix (A.4) the matrix x diag( 1, 1, . . . , 1, - 1, - 1, . . . , -l), with 
x a small positive number. For the columns of 3-’ = F-’ ( x  = 0) one can take the limits 
of the columns of 3 - ’ ( x )  for x tending to zero. In Appendix B another proof of the 
theorem will be given. This proof simultaneously suggests an algorithm (see the remark 
at the end of Appendix Bt) ,  which enables us to calculate in practice 2n vectors 
constituting an orthonormal set 93 of the required form (A.11) so that they can serve as 
columns of a F-’. 

To summarise, we have shown that the general homogeneous quadratic fermion 
Hamiltonian (A.1) (or any other Hermitian operator of that form) can be diagonalised 
by a homogeneous linear transformation applied to the construction operators. Our 
treatment shows the way for actually calculating the transformation in practice. The 

t For real matrices 9 the algorithm, given in Appendix A of the paper of Lieb et ai (1961), is to be preferred 
because of the lower order of the matrix to be diagonalised (cf the end of the first paragraph of this appendix). 
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diagonalised Hamiltonian is obtained by substitution of equations (A.9) and (A.6) into 
equation (AA)?: 

r = l  
(A.12) 

Appendix B 

In this appendix we prove a theorem which was applied in Appendix A. The proof 
needs a lemma (Lemma 2) which in turn needs Lemma 1. 

Lemma 1. Let Y be an n-dimensional subspace of the 2m-dimensional vector space 
with the property that, if the vector (r  s)’ lies in 9, then also the vector (s* r*)’ does. 
Then there exists an orthogonal basis 9“ of Y of the form: 

iB.1) 

where each q, (i = 1 , 2 , .  . . , n )  denotes one of the values 1 and -1. In the case that 9 is 
spanned by a set of n linearly independent real vectors, the column m-vectors t, can be 
chosen to be real. 

Proof. To find a first vector of 93‘f ,  we choose an arbitrary vector (r s)’ lying in 9’. By 
hypothesis also (s* r*)‘ lies in Y and consequently the two vectors (ri s *  s * r*)’. Since 
at least one of these two vectors is non-zero, we have a first vector of 53“. Next we find 
vector by vector n orthogonal vectors which constitute a basis 93” of the form (B. l )  by 
the following procedure. Suppose we have found already an orthogonal set of k < n 
vectors lying in Y of the form ( r ,  q,r?)’ (i  = 1, 2, . . . , k); in what follows we shall call 
these k vectors the original vectors. Then we choose an arbitrary vector ( r  s)’ which lies 
in Y and which is linearly independent of the k original vectors. We observe that the 
two vectors (r*s* s *r*)l (which also lie in 9) cannot simultaneously be linear 
combinations of the k original vectors (note that also the zero vector is a linear 
combination of these k vectors). This is true because we would have: 

wf ={(tl qltT)’,  (t2 q2tT)’, . . . , ( r l l  vnt:)f), 

r + s * = a l r l + a z t 2 + .  . . 
s + r* = a lq l t?  + u2q2tT + . . . + a k q k t f  

and 

r - s *  = b l t l  + b2t2 + . . . + b k t k  

s -r* = b l q l t ?  + b2qrtT + . . . + bkqktc, a,, 6, complex scalars, 

whence 

2r = ( a l  t bi ) t l  + (a2 + 62)r2 + . . . + ( U k  + bk)tk 

2S=(Ui+bl)771rT +(Uz+b2)752tf + .  . . f (akfbk)qkt f ,  
iB.3) 

which contradicts our assumption that ( r  s)’ is linearly independent of the k original 
vectors. So we have found at least one vector of the form ( t  qt*)’ with the property that 

+ Note that one is free to interchange the r-th and ( m  + r)-th column (1 C r S i n )  of 3 - l  for an arbitrary 
number of r ‘s, because this manipulation does not affect the required form (A.7) of 3-l. The values of the 
corresponding hw, in equation (A.12) then turn into their opposites, but from equation (A.12) we easily see 
that the spectrum remains the same, as it should. 
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it is linearly independent of the k original vectors. Now the familiar orthogonalisation 
procedure of Gram-Schmidt turns this ( t  qt*)’ into a vector qfE+l)’ with the same 
q which is perpendicular to the k original vectors. This is seen by taking into account 
that the scalar product of ( t  qt*)‘ by each of the k original vectors ( t ,  q,tT)’ is real or 
purely imaginary (possibly zero) depending on whether q and 7, are equal or not and 
that any vector of the form ( t  Ut*) ’  is changed into a vector of the form ( t  -vt*)’ by 
multiplication by the scalar i. Thus we see how step by step an orthogonal basis 3“ of Y 
of the form (B. l )  can be found. The statement about the case that Y is spanned by a set 
of n linearly independent real vectors, is trivial (note that the purely imaginary result for 
a scalar product of two real vectors with different 77 is necessarily zero). 

Lemma 2. Let 9 be a 2m-square Hermitian singular matrix of the partitioned form: 

where A and B are m-square matrices. Let furthermore 2n be the multiplicity of the 
eigenvalue 0 of 9 and Y the 2n-dimensional subspace of eigenvectors of 9, associated 
with the eigenvalue 0. Then there exists an orthonormal basis 93’ of Y of the form: 

In the case that the matrix 9 is real, the column m-vectors t, (i = 1, 2. . . . , 2n)  can be 
chosen to be real. 

Preremark. In Appendix A we saw already that the multiplicity of the eigenvalue 0 
of a Hermitian matrix 9 of the form (B.4) is even. The proof was based on the fact that 
according to equation (A.10) the non-zero eigenvalues of 9 occur in pairs { A ,  - A }  as do 
the corresponding eigenvectors. 

Proof. Reading equation (A.10) with A = 0 we see that Y satisfies the condition of 
Lemma 1 (with 2n instead of n ) .  Therefore there exists for Y an orthonormal basis 3“ 
of 2n vectors of the form ( t  qt*)’ (the vectors of 93” can be normalised by real scalars). 
From 9’’ a basis 93‘ of the form (B.5) is easily constructed because we can change any 
vector of the form ( t  Vt*)’  into a vector of the form ( t  -qt*)’ by multiplication by the 
scalar i. The lemma has been proved as far as a general complex 9 is concerned. 

The proof of the statement of the lemma for a real 9 is somewhat more complicated. 
We start from an orthonormal basis 93”of 2n real vectors of the form ( t  qt)’, which exists 
according to Lemma 1. Then in 9” exactly n of the q’s  equal one, the remaining n 7’s 
being minus one. To see this we include in our considerations the eigenvectors of 9, 
associated with non-zero eigenvalues. Starting from any normalised real eigenvector 
( U  U ) ’  of 9, associated with a positive eigenvalue A, we can construct as follows an 
orthonormal pair of vectors, each vector of the pair being of the form ( t  qt)’ but with 
different 77’s for the two vectors. Taking into account that ( U  U ) ’  is an eigenvector of 9 
associated with the eigenvalue -A and that consequently (the eigenvalues A and -A 
are different) (U U ) ’  is perpendicular to ( U  U)’, we easily verify that the vectors 2 - ” 2 ( ~  f 
U U * U)’ constitute a pair with the required properties. It is now clear how to construct, 
starting from an orthonormal set of m - n real eigenvectors ( U  U)’ associated with the 
positive eigenvalues of 9, an orthonormal set of 2(m - n )  vectors, m - n of them being 
of the form ( t  t)’ and the remaining m - n of the form ( t  -t)’. All these 2(m - n )  vectors 
are orthogonal to (the vectors of) 9. Now concentrating on the orthonormal set of 
m - n vectors of the form ( t  t)’we observe that the number of vectors of the form ( t  t)’ in 
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the 93” obtained above cannot exceed n. This is because we would have more than m 
perpendicular (real) 2m-vectors of the form ( t  t)’ and consequently more than m 
perpendicular m-vectors t. In a similar way it is seen that the number of vectors in 3’’ of 
the form ( t  -t)’ cannot exceed n. So exactly n vectors in the %‘’obtained are of the form 
( t  t)’ and exactly n of the form ( t  -t)‘. We see that the basis 93” as it presents itself, in 
fact has already the form (B.5) required for W’, with real vectors t,. Lemma 2 has been 
proved completely. 

With the help of Lemma 2 we can show the validity of the following theorem which 
was applied in Appendix A. 

Theorem. Under the conditions and in the notation of Lemma 2 there exists an 
orthonormal basis 93 of Y of the form: 

93 ={(U1 U J ,  ( U 2  UZ)’, . . , (U, on)‘, (UT UT)’, (U,* U,*)‘, . . . ,(U: U,*) ‘ } ,  03.6) 

i.e. for any vector (U U)’ of the basis 93, the vector (U* U*)’ is one of the remaining 2n - 1 
vectors in $3. In the case that the matrix 9 is real, the column m-vectors U, and U, 
(i = 1 , 2 , .  . . , n)  can be chosen to be real. 

Proof. According to Lemma 2 there exists an orthonormal basis 93’ of 9 of the form 
(B.5), where the m-vectors f, (i = 1 , 2 , .  . . , 2 n )  can be chosen to be real in case the 
matrix 9 is real. Now for each i = 1, 2, . . . , n the pair of vectors { ( t i  tf) ‘, (t,+, -t t+l)’} 
of this basis W‘ yields an (orthonormal) pair in the orthonormal basis 93 to be found 
according to: 

With this construction of the basis 93 we have proved the theorem. 

Remark. The proof just given of the existence of an orthonormal basis W of Y of the 
form (B.6) (93 containing real vectors in the case that the matrix 9 is real), together with 
the proofs of Lemmas 1 and 2, suggests an algorithm which can be used in practice (e.g. 
in  computer programs) for the actual calculation of such a basis. 

Appendix C. 

In this appendix we treat the problem raised in the last footnote in § 2. Using results and 
arguments out of Appendix B, we substantiate our assertion that in general no unique 
natural choice exists for the first and (m + 2)-th column of 9’ in equation (2.12). The 
question seems interesting for a possible physical interpretation in actual physical 
problems of the construction operators f,, f: in equation (2.13) (r = 1, 2, . . . , m), 
associated with the remaining columns in 9’. We start with a lemma which helps to 
obtain a correct picture of the problem under consideration. 

Lemma. Let 

be an orthonormal pair of 2m-vectors and let YPair be the 2-dimensional subspace 
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spanned by these vectors (vl and 772 each denote 1 or -1). Then (1st statement) there is 
an infinite number of different pairs 9 of orthonormal vectors in Ypa,, of the form 
9 ={tl, t 2 } = { ( u  U)‘, (U* U*)’}. There is (2nd statement) at most one real orthonormal 
pair of that form in Ypalr (it is self-evident that in this connection pairs are considered 
equal if each vector of one pair is proportional to a vector of the other pair). Finally (3rd 
statement) such a real pair exists if and only if there exists in .Ypa,, a pair of vectors of the 
form (C.l), with t; and t l  real and different v 1  and 772. 

Proof. The truth of the first statement is seen by observing that for each set of real 
scalars a and b with a2 + b2 = 1, one can construct a pair 9 of the required form lying in 
Yp,,, in the following way. Since the sign of 7 can always be changed by multiplication 
of the corresponding vector by the scalar i, we do not restrict the generality if we assume 
q1 = 772 = 1. Then also the orthonormal pair 9:b {at;’  + b t;, b t; - a &} has the form 
of the extreme right-hand side of equation (C.1) with 771 = 772 = 1 and consequently also 
P’={tLbl, t ~ b 2 } = { a t l + b t 9 , i ( b t ; - a t l ( ) } h a s  thesame form butwithT1 = 1, ~ ~ = - 1 .  
The pair Pab ={tabl, t , ~ , ~ } = { 2 - ~ ’ * ( t L ~ ~  + t h b 2 ) ,  2-1’2(tLbl -tLb2)} is orthonormal, has 
the form {(U U)’, (U* U*)’} required for 9, and is obviously in general different for 
different combinations of a and b. The first statement has been proved. 

Concentrating on the second statement, we suppose that P1 ={(ul  u~)’, (u1 ul)’}and 
P2 = { ( u 2  u2)’ ,  (u2 uz)’} are two real orthonormal pairs of 2m-vectors in .Ypalr. We show 
that the pairs should be equal. Since the vectors ( u l  U])’ and ( U ]  u l ) ’  are perpendicular, 
the product U:U, = U ~ U I  = 0. Since ( u 2  u2)’ is a real vector in .CYpa,,, it is a linear 
combination of the two vectors in Y1: ( u 2  u 2 ) ’ =  a ( u l  vl)’+b(ul u l ) ‘ ,  with a and b real 
scalars. In view of the orthogonality of the vectors (u2  u2) ‘  and ( u 2  u2) ‘ ,  the product 
(aul + b u 1 ) ~ ( ~ ~ 1  +bul)  = ab(u:ul + u:u~) = ab should vanish. It follows that a or b 
equals zero. It is now easily shown that the pairs P1 and P2 are equal, indeed. 

To prove the third statement we start from a real orthonormal pair P”=(t; ,  ts}= 
{ ( t l  [I)’, ( t 2  - t2)’} of vectors in Ypa,r. We see immediately that the pair P = 
{2-”’(t;’+ ti), 2-”*(t;’- ti)} ={(U U)’, (U U)’} is a real orthonormal pair of vectors in 
Ypa,, of the form required for P. The converse is also readily seen. With this also the 
last statement of the lemma has been proved. 

We now turn our attention to the problem mentioned in the beginning of this 
appendix. In  what follows we refer to the 1st and (m + 2)-th column of 3’ in equation 
(2.12), which are assumed to be zero-eigenvalue eigenvectors of 6’ (cf the main text 
corresponding to the last footnote in 8 2), as the ghost columns (of 5’); the vector 
(100 . .  . 0 100.  . . O)’, which is a zero-eigenvalue eigenvector of any 6 (cf the last 
footnote but one in § 2), is called the ghost vector. The ghost plane @ghost is the 
2-dimensional vector space spanned by the ghost columns of ?. 

In view of the lemma treated above, at most the ghost plane can be expected to be 
uniquely defined: the ghost columns themselves can be chosen in many ways in @ghost 

unless it is considered reasonable to require the ghost columns to be real where possible. 
If A. is the only A, vanishing in equation (2.13), 9 g h o s t  is obviously uniquely defined. 
However, in the case where other A,  apart from A 0  also vanish it is impossible to define a 
2-dimensional space uniquely which can be considered as the natural one to contain the 
two ghost columns of y. This will now be shown. 

It is natural to require for such a natural 9ghost that i t  contain the ghost vector 
(100. . . 0 100. . . O ) ‘ .  First we remark that there is no second such standard zero- 
eigenvalue eigenvector of 8 which can be given for a general 6 and which is derived by 
inspection from the special form (2.9) of 8. We show this by giving an example of a 8 
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where it is obvious that no such second vector exists. Let be a grand-dynamical 
matrix of order 6 ( m  = 2 )  with the matrices A and l? (defined in equation (2.9)) given by: 

A, B, C, M real numbers. (C.2) 

It is seen by inspection that for general (real) values of the elements A, B, C and M a 
zero-eigenvalue eigenvector of 6 is given by: 

-M -B 0 

[AC + B2 - 2 M ( B  + C )  2 M ( B  - A )  

-(AC + B 2 )  2M(B + C )  -2M(B -A)]’. 

Moreover equation (C.3) represents, in case AC + B 2  f 0, the only real zero-eigenvalue 
eigenvector of 9 of the form (i -;)’so that the multiplicity of the zero eigenvalue of 4 
equals 2 (according to the proof of Lemma 2 in Appendix B, a higher multiplicity would 
imply the existence of at least two perpendicular real zero-eigenvalue eigenvectors of 6 
of the form (i -;)’ (cf equation (B.5))). 

We now take M # 0 fixed and the elements A, B and -C in the neighbourhood of 
the fixed value 1. For such a 6 we look for a second zero-eigenvalue eigenvector which 
is as standard as the ghost vector and perpendicular to this vector. If AC +B2 # 0, such 
a second vector is given uniquely by equation (C.3) (apart from a multiplicative scalar). 
However, we obtain a different result in case AC + B 2  = 0. As an example we consider 
Go, by which we denote the 8 under consideration with the fixed M chosen and 
A = B = -C = 1. The existence of a second standard zero-eigenvalue eigenvector for 
this 6’ would imply at least that the limiting vector of the normalised vector propor- 
tional to equation ((2.3) for the elements A, B and -C tending to 1 ( M  fixed), together 
with the ghost vector, uniquely defines a ghost plane connected with 6’. However, the 
ghost plane thus obtained is not unique, which is seen e.g. by considering the cases 
A = B = l ,  C+-1 (limiting vectorcc(1 - 2 M 0  -1 2M0) ’ )  and B = -C = 1, 
A += 1 (limiting vector a(l 0 2M -1 0 -2M)’) .  (Note that the ghost vector and 
the two limiting vectors just mentioned constitute a set of three linearly independent 
zero-eigenvalue eigenvectors of Go, which easily leads us to the conclusion that the 
multiplicity of the zero eigenvalue equals 4.) Therefore at least for 6’ no second 
standard zero-eigenvalue eigenvector exists, which we wanted to show initially. Simul- 
taneously we have seen that a natural ghost plane does not exist either for Go. 
Apparently the existence of a second standard zero-eigenvalue eigenvector or of a 
natural ghost plane of such eigenvectors is not a general property of any 6 on the basis 
of its special form (2.9) alone. 

In view of this result it is impossible (in case A, other than A. are also vanishing) to 
define uniquely the plane g g h o s t  that can be considered as the natural one to contain the 
two ghost columns of gt. The only ‘natural’ requirement on the plane gghost in this case 
is that the ghost vector lies in it. Accordingly for the construction of the ghost columns 
of 9’ we can start from any orthonormal pair of the form @‘’E 
{2-”2(100. . . 0 100. . . Oj’, (Fz q2;;)’); each 4’ (equation (B.5)) for example, with the 
(normalised) ghost vector as one of the vectors, immediately yields 2 n  - 1 such pairs. 
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According to the procedure outlined in the proof of the first statement of the lemma 
above, we can in many ways construct from the gf' chosen a pair of ghost columns of gt 
of the form {(C C)', (a* C * ) f } .  

To summarise, we conclude that in actual physical problems the physical inter- 
pretation of the construction operators qr, +: in equation (2.13) ( r  = 1, 2, . . . , m )  at 
least in cases of a vanishing A,  (again r # 0) should be derived by physical arguments and 
that the mathematics of the problem alone does not give answers. For example, let a 
physical Hamiltonian have temperature-dependent coefficients, and let this Hamil- 
tonian at a certain critical temperature T, have some A, = 0. It may then happen that for 
the Hamiltonian at T, only transformation matrices F(Tc), which are obtained as the 
limit of $'( T )  for the temperature T tending to T,, have columns which correspond by 
equation (2.1 1) to physically meaningful +. 

References 

de Boer J 1965 Studies in Statistical Mechanics vol 3, ed J de Boer and G E Uhlenbeck (Amsterdam: 

Colpa J H P 1978 Physica 93 A 327 
Lieb E, Schultz T and Mattis D 1961 Ann. Phys. 16 407 

North-Holland) p 2 13 


